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0 The conformal bootstrap: a quick review
© A new bootstrap equation in 1d
© Derivation: analyticity from causality in 2d

@ Perspectives on the momentum-space bootstrap in d > 2
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The 1d bootstrap equation
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Optimal functionals

Example: Ay =1: B(A)>0 VA>2  Mazag 1611.10060
B 2(22% — 5z +5)

=172 loglz| + (z ¢ 1—2)



https://arxiv.org/abs/1611.10060
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Optimal functionals

— A0l A, =02
—— A, 03 A, 04
A 05— A 06
—— A, =07 —— A, =08

AL =10

P
5 /4 "‘i\
g R\

Generalization: 5(0) =0, B(A)>0 VA>2A,+1
= bound on scaling dimension of lowest-lying operator

A§2A¢+1
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The generalized free fermion theory

Zeros of optimal functionals correspond to actual operators:

o Identity (vacuum state) with A =0

@ Wick contractions of anticommuting field O,, ~ qﬁD”gqﬁ
with A =2A, +2n+1 (n € N) and

(2A¢)%n+1
2n + 1)'<4A¢ + 2n)2n+1

2 _
Css0, = 2(

Correlation function:
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The generalized free fermion theory

Zeros of optimal functionals correspond to actual operators:

o Identity (vacuum state) with A =0

@ Wick contractions of anticommuting field O,, ~ qﬁD”gqﬁ
with A =2A, +2n+1 (n € N) and

2 _ (2A¢)%n+1
Cos0, =2
" (2n + 1)‘(4A¢ +2n+1— 1)2n+1

Correlation function:

(0](1)B(2)p(23)P(24)|0) o +1 4 2728¢ 4 (1 — 2) 220

Works also with generalized free boson: A = 2A4 + 2n



New equation
The new crossing equation

Standard bootstrap equation

Z Cq25¢0 [2A72A¢2F1(A, A;2A; z)

— (1= 2)27 22,1 (A, 02451 — 2)| =0

New momentum-space bootstrap equation

(2A) 2A4—1 . .
ZC¢¢O |: 2F(2A¢)w ¢ 2F1(1 —A,A72A¢,w)

A 1
T(2A4 — AT(A)

2L (A =204 +1, A 2A;w)] —0
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Comparison

andard bootstrap equation ew bootstrap equation
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Comparison

Standard bootstrap equation

3 Cloo [4720:F1(A, 42 2)
o

— (1= 2)A 722, B (A, A 2051 — ;)} -0

New bootstrap equation

T(24) A
2 28,—1 _ Y
}U @ [r(' a2 - A A2A )

- toE, —myrE A — 28+ LA2A )] —0

@ Symmetric z <> 1 — 2

@ Absolute convergence for
z€C\ (—00,0)U(1,00)

@ Blocks are unphysical

@ Asymmetric
@ No absolute convergence
in s-channel

@ Blocks are 3-pt functions
in momentum space

4

peculiar properties
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Features of the new equation

(ZA) DA\ =1l . .
ZCWO[ T(A)Pr A, " 2F1(1 = A, 4,284 w)

A 1
T(2A4 — A)T(A)

2FL(A — 204 + 1, A 2A; w)] -0

Identity operator: A =0
@ s channel is zero
@ t channel x §(w)
Double-twist operators: A = 2A, +n with n € N

@ t channel is zero

@ s channel is Gegenbauer polynomial C(2A¢ 1/2)(1 —2w)

Other special case: A € N

(2A¢—1,1—2A¢)(

@ s channel is Jacobi polynomial Py, 1 —2w)
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Connection between the two equations

Projection onto a basis of Jacobi polynomials

/1 dw(l —w)' =22 P, (1 - 2w)].. ] VneN
0

New bootstrap equation projected (1)

ZCid;o [F(?A) sin(mA) _sin[r(244 — A)](2A4 — A)y

2n(A+n)(l—A+n) T(A =204 4+ 1)pt

% +F AAA—2A¢+1A—2A¢+1 —0
s 2AA—2A¢+n+2A—2A¢,—n+1’ -



https://arxiv.org/abs/1611.10060
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Connection between the two equations

Projection onto a basis of Jacobi polynomials

/1 dw(l —w)' =22 P, (1 - 2w)].. ] VneN
0

New bootstrap equation projected (1)

Z o2 [ ) sin(mA) _sin[r(244 — A)](2A4 — A)y
— P [T(A2 w(A+n)(1—-A+n) (A — 204 + D)pt1
% +F AAA—2A¢+1A—2A¢+1 —0
s 2AA—2A¢+n+2A—2A¢,—n+1’ -

A known basis of functionals!!! Maz3a¢, 1611.10060

=> new equation is integral transform of original along branch cut


https://arxiv.org/abs/1611.10060
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A nice basis of functionals

New bootstrap equation projected (2)

I'(24)
2 Caso s - AT T

1
2Dy —A+n) (20 +A—1+n)
T(A —2A, + 1)

CT(2A, — A)T(A —2A4+1—n)T(A+2A4 +n)

o AAA-28+1L,A+28,-1  \]_,
I 20A 20, +1 -1, A+ 205 +n -

v

@ Zero at all double twist dimension but A = 2A, +n

@ Known as contour integral in cross-ratio space
Maz&g, Rastelli, Zhou 1910.12855

e Convenient for constructing free boson/fermion functionals


https://arxiv.org/abs/1910.12855

New eqL;ation
Generalized free field solution

Plug in scaling dimensions:
@ identity A =0 (only t channel)
o double-twist operators A = 2A4 + k, k € N (only s channel)

(=)™ nl(4Ay +n—1), .
o e J

Recover free fermion/boson OPE coefficients for odd/even n

¢$On nl(4Ay +n—1),
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How did we derive the new equation?

Simple Fourier transform?

3p) = / &z ()

In Euclidean space:
@ correlators ill-defined at coincident points

@ Fourier transform does not commute with OPE

In Minkowski space:
@ time-ordered correlators do not admit an OPE

@ OPE for Wightman functions, but no crossing symmetry
= must be replaced by something else



Momentum-space OPE
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(016(p1)@(p2)B(p3)B(pa)[0)

2)¢
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P
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Momentum-space OPE

(016(p1)@(p2)B(p3)B(pa)[0)

2)¢
= 0%p1 + p2 + 3 + pa) (D(p1)S(p2)D(p3)H(p1) )

<<<5(p1)5(p2)<5(p3)5(p4)>>
~ > (D(p1)d(p2) O™ (—p)) (O™ () (p3) ()N D/ (cos 0)

O,m

with p=p1 +p2 = —p3 — pa and spin indices in d > 2
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Conformal blocks are products of 3-point functions:

Pi
P;

@ Generalized hypergeometric functions of ratios of momenta
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Momentum-space conformal blocks

Conformal blocks are products of 3-point functions:

2
@ Generalized hypergeometric functions of ratios of momenta bi

2
p;j
@ Analytic except at light-cone crossings
(D1(p1)d2(p2)d3(ps)) oc ()XY as pf = 0s
@ Tempered distributions: singularities are integrable
(Ai>§—1)

@ Residue is ordinary 9 F} hypergeometric function
(two different forms depending on the limit)

Gillioz 2012.09825


https://arxiv.org/abs/2012.09825
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The consequences of causality in momentum space

Causality: the commutator has
support in the light cone

[6(0),6(2)] =0V |&] > |2”]

= special analyticity properties in ¢ for [(;S(p —q),o(p+ q)]

= Jost-Lehmann-Dyson representation for 4-pt function (1957)

(0lp(~k — p)[6(p — @), d(p + @)] 6(k — p)|0)

also valid without mass gap
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The consequences of causality in momentum space

Causality: the retarded commutator has
support in the past light cone

0(=2")[¢(0), p(x)] =0 ¥ |2] > —a”

= special analyticity properties in ¢ for [(;S(p —q),o(p+ q)]
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The consequences of causality in momentum space

Causality: the retarded commutator has
support in the past light cone

0(—2")[¢(0),6(x)] =0 V| > —a®

= special analyticity properties in ¢ for [(;S(p —q),o(p+ q)]

> [ 019k =) 36— 0). 9(p + )]k = p)0)

is analytic in ¢ in the domain |im¢] < 1
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Discontinuities of the conformal blocks

Examine analyticity in s and t channel & for each conformal block
with p1, p4, ¢ fixed and varying ¢°, where ¢ = %(pg — p2)

The integral is analytic at generic ¢



Derivation
L]

Discontinuities of the conformal blocks

Examine analyticity in s and t channel & for each conformal block
with p1, p4, ¢ fixed and varying ¢°, where ¢ = %(pg — p2)

3 ¢i such that the integral is discontinuous at ¢ = g



Derivation
L]

Discontinuities of the conformal blocks

Examine analyticity in s and t channel & for each conformal block
with p1, p4, ¢ fixed and varying ¢°, where ¢ = %(pg — p2)

—

3 ¢i such that the integral is discontinuous at ¢ = ¢, and ¢ = —{.
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Matching discontinuities in 2d

Kinematics of discontinuity fixed by p; and py4:

wE—p =" €(01)
W= —]% = Pi €(0,1)
P1 S
. d¢® ~ ~ )
dise / 0 i \op)olp—g 0)6(p + ¢)(pa ZC¢,¢OSh( )S;, ()

__ I'24) 28,1 AL AL9AL
SA('[U) = mw 2F1(1 A,A,2A¢,w)
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Matching discontinuities in 2d

Kinematics of discontinuity fixed by p; and py4:

t
wz—;j—;Lr %—g €(0,1)
o _ pg_pi_t
’LU:—E—?—E 6(0,1)
dg® ~ ~ -
dise [T (330~ )30+ )Ip0)
dg® ~ - - -
dise [ (@030 + )ty — )300)
_ I'(24) 20,1 AL
SA('[U) = mw k4 2F1(17A7A,2A¢,w)
A—
Ta(w) w™ DFL(A — 20y + 1, A3 20 w)

T T(2A, — A)T(A)
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Matching discontinuities in 2d

Kinematics of discontinuity fixed by p; and py4:

t
wz—%Lr %_E €(0,1)
o ppo_pi_t
’LU:—E—?—E 6(0,1)
g ~ ~ -
dise [T (@30~ )30+ )Ip0)
d® ~ ~ ~ -
= dise [ 5 (301)(p + )30 ~ D3p1)
rea _
Sa(w) = Mw2A¢ LE(1— A A 2A45w)
,wAfl
Ta(w) = TA, = A)F(A)QFl(A —2A4 + 1,A;2A;w)
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Perspectives in higher d

What is still valid in d > 27
o Causality = analyticity
@ Discontinuity of the blocks at double light cone crossing

@ Residue is o F} hypergeometric of ratios of momenta

What changes in d > 27
@ Discontinuous point — discontinuous locus

@ Kinematic variables are different in the s and t channel:

2 .2
t t

(2917]?47(:0505) “ (2,2,coset>
S S pl p4

@ Spin of internal operator
(but characterized by integer ¢ for external scalars)
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Conformal blocks

More work needed to fit on a slide!
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Generalized free field theory

At double-twist dimensions A = 2A4 + £ + 2n,
@ t-channel blocks are zero

@ s-channel blocks are a sum of products of polynomials

But spin complicates the matter. ..

o Gegenbauer 07(573)/2(0% 0s) of degree m =0,...,¢

e Jacobi Py (1 —2pi/s) and Pnyj (1 —2p3/s)
with 7,7=0,..., 4 —m — possible improvements?

Orthogonality can be used to recover OPE coefficients
Fitzpatrick, Kaplan 1112.4845


https://arxiv.org/abs/1112.4845

Perspectives in d > 2
L]

Conclusions

Summary

@ A new bootstrap equation in 2 and higher d,
with conformal blocks known in closed form in any d!

@ A nice basis of functionals with zeros at double-twist
dimensions

@ All results also for distinct external dimensions

Outlook

@ Analytical bootstrap in a neighborhood of GFF
(e.g. weakly relevant flows, AdS duals, ...)

@ Build optimal functionals, numerically and analytically

@ Other numerical approaches using asymmetry
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