Derivation 000000 Perspectives in d > 2 0000

The conformal bootstrap in momentum space

Marc Gillioz

University of Applied Sciences & Arts of Western Switzerland

Sion, Switzerland

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

University of Haifa - April 30, 2025

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 ● ●

- 1 The conformal bootstrap: a quick review
- 2 A new bootstrap equation in 1d
- 3 Derivation: analyticity from causality in 2d
- 4 Perspectives on the momentum-space bootstrap in d > 2

$$\langle 0|\phi_1\phi_2\phi_3\phi_4|0
angle = \sum_{|\psi
angle} \langle 0|\phi_1\phi_2|\psi
angle \langle \psi|\phi_3\phi_4|0
angle$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$\langle 0|\phi_1\phi_2\phi_3\phi_4|0\rangle = \sum_{|\psi\rangle} \langle 0|\phi_1\phi_2|\psi\rangle\langle\psi|\phi_3\phi_4|0\rangle$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• state/operator correspondence

$$\langle 0|\phi_1\phi_2\phi_3\phi_4|0\rangle = \sum_{|\psi\rangle} \langle 0|\phi_1\phi_2|\psi\rangle\langle\psi|\phi_3\phi_4|0\rangle$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- state/operator correspondence
- distinguish primaries (\mathcal{O}) from descendants ($\partial \mathcal{O}$)

$$\langle 0|\phi_1\phi_2\phi_3\phi_4|0\rangle = \sum_{|\psi\rangle} \langle 0|\phi_1\phi_2|\psi\rangle\langle\psi|\phi_3\phi_4|0\rangle$$

- state/operator correspondence
- distinguish primaries (\mathcal{O}) from descendants ($\partial \mathcal{O}$)
- \bullet operators characterized by scaling dimension Δ and spin

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$\langle 0|\phi_1\phi_2\phi_3\phi_4|0\rangle = \sum_{|\psi\rangle} \langle 0|\phi_1\phi_2|\psi\rangle\langle\psi|\phi_3\phi_4|0\rangle$$

- state/operator correspondence
- distinguish primaries (\mathcal{O}) from descendants ($\partial \mathcal{O}$)
- \bullet operators characterized by scaling dimension Δ and spin

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

• 3-point functions fixed in terms of Δ_i and C_{ijk}

$$\langle 0|\phi_1\phi_2\phi_3\phi_4|0\rangle = \sum_{|\psi\rangle} \langle 0|\phi_1\phi_2|\psi\rangle\langle\psi|\phi_3\phi_4|0\rangle$$

- state/operator correspondence
- distinguish primaries (\mathcal{O}) from descendants ($\partial \mathcal{O}$)
- ${\, \bullet \,}$ operators characterized by scaling dimension Δ and spin
- 3-point functions fixed in terms of Δ_i and C_{ijk}

 Bootstrap review
 New equation
 Derivation
 Perspectives in d > 2

 00000
 000000
 000000
 00000
 00000

Conformal blocks in 1d

\equiv resummed contribution of descendants

ヘロト 人間 ト 人 ヨト 人 ヨトー

æ

 Bootstrap review
 New equation
 Derivation
 Perspectives in d > 2

 0●0000
 000000
 000000
 00000
 00000

Conformal blocks in 1d

\equiv resummed contribution of descendants

$$= \sum_{\mathcal{O}} C^2_{\phi\phi\mathcal{O}} \, z^{\Delta - 2\Delta_{\phi}} {}_2F_1(\Delta, \Delta; 2\Delta; z)$$

Cross-ratio:
$$z = \frac{(x_1 - x_2)(x_3 - x_4)}{(x_1 - x_4)(x_3 - x_2)} \in (0, 1)$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

 Bootstrap review
 New equation
 Derivation
 Perspectives in d > 2

 0●0000
 000000
 000000
 00000
 00000

Conformal blocks in 1d

\equiv resummed contribution of descendants

$$= \sum_{\mathcal{O}} C^2_{\phi\phi\mathcal{O}} \, z^{\Delta - 2\Delta_{\phi}} {}_2F_1(\Delta, \Delta; 2\Delta; z)$$

Cross-ratio:
$$z = \frac{(x_1 - x_2)(x_3 - x_4)}{(x_1 - x_4)(x_3 - x_2)} \in \mathbb{C} \setminus (-\infty, 0) \cup (1, \infty)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Bootstrap review	New equation	Derivation 000000	$\begin{array}{l} \text{Perspectives in } d > 2 \\ \text{0000} \end{array}$
Crossing average	e 1		

Bootstrap review	New equation	Derivation 000000	Perspectives in d > 2 0000
Crossing symme	- - trv		

The 1d bootstrap equation

o

$$\sum_{\mathcal{O}} C^2_{\phi\phi\mathcal{O}} z^{\Delta-2\Delta_{\phi}} F_1(\Delta,\Delta;2\Delta;z)$$
$$= \sum_{\mathcal{O}} C^2_{\phi\phi\mathcal{O}} (1-z)^{\Delta-2\Delta_{\phi}} F_1(\Delta,\Delta;2\Delta;1-z)$$

Bootstrap review	New equation	Derivation 000000	Perspectives in d > 2 0000
Crossing sym	metrv		

The 1d bootstrap equation

$$\sum_{\mathcal{O}} C^2_{\phi\phi\mathcal{O}} \Big[z^{\Delta - 2\Delta_{\phi}} {}_2F_1(\Delta, \Delta; 2\Delta; z) \\ - (1-z)^{\Delta - 2\Delta_{\phi}} {}_2F_1(\Delta, \Delta; 2\Delta; 1-z) \Big] = 0$$

Derivation

Perspectives in d > 2 0000

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Applying functionals

The 1d bootstrap equation

$$\sum_{\mathcal{O}} C_{\phi\phi\mathcal{O}}^2 \left[z^{\Delta - 2\Delta_{\phi}} {}_2 F_1(\Delta, \Delta; 2\Delta; z) - (1-z)^{\Delta - 2\Delta_{\phi}} {}_2 F_1(\Delta, \Delta; 2\Delta; 1-z) \right] = 0$$

Derivation

Perspectives in d > 2 0000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Applying functionals

The 1d bootstrap equation

$$\sum_{\mathcal{O}} C_{\phi\phi\mathcal{O}}^2 \left[z^{\Delta - 2\Delta_{\phi}} {}_2F_1(\Delta, \Delta; 2\Delta; z) - (1-z)^{\Delta - 2\Delta_{\phi}} {}_2F_1(\Delta, \Delta; 2\Delta; 1-z) \right] = 0$$

Derivation

Perspectives in d > 2 0000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 ● ●

Applying functionals

The 1d bootstrap equation

$$\sum_{\mathcal{O}} C_{\phi\phi\mathcal{O}}^2 \left[z^{\Delta - 2\Delta_{\phi}} {}_2F_1(\Delta, \Delta; 2\Delta; z) - (1-z)^{\Delta - 2\Delta_{\phi}} {}_2F_1(\Delta, \Delta; 2\Delta; 1-z) \right] = 0$$

Bootstrap review

New equation

Derivation 000000 Perspectives in d > 2 0000

Optimal functionals

Example: $\Delta_{\phi} = \frac{1}{2}$: $\beta(\Delta) \ge 0$ $\forall \Delta \ge 2$ Mazáč, 1611.10060

$$f(z) = 1 + \frac{1}{z(z-1)} - \left[\frac{z(2z^2 - 5z + 5)}{2(z-1)^2} \log|z| + (z \leftrightarrow 1 - z)\right]$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … のへで

Bootstrap review

New equation

Derivation 000000 Perspectives in d > 2 0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Optimal functionals

 $\label{eq:Generalization: } \mbox{Generalization: } \beta(0) = 0, \quad \beta(\Delta) \geq 0 \qquad \forall \ \Delta \geq 2 \Delta_{\phi} + 1 \\$

 \implies bound on scaling dimension of lowest-lying operator

$$\Delta \le 2\Delta_{\phi} + 1$$

Zeros of optimal functionals correspond to actual operators:

- Identity (vacuum state) with $\Delta=0$
- Wick contractions of anticommuting field $\mathcal{O}_n \sim \phi \Box^n \overleftrightarrow{\partial} \phi$ with $\Delta = 2\Delta_{\phi} + 2n + 1 \ (n \in \mathbb{N})$ and

$$C^2_{\phi\phi\mathcal{O}_n} = 2 \frac{(2\Delta_{\phi})^2_{2n+1}}{(2n+1)!(4\Delta_{\phi}+2n)_{2n+1}}$$

Correlation function:

$$\langle 0|\phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)|0\rangle \propto -1 + z^{-2\Delta_{\phi}} + (1-z)^{-2\Delta_{\phi}}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Zeros of optimal functionals correspond to actual operators:

- Identity (vacuum state) with $\Delta=0$
- Wick contractions of anticommuting field $\mathcal{O}_n \sim \phi \Box^n \overleftrightarrow{\partial} \phi$ with $\Delta = 2\Delta_{\phi} + 2n + 1 \ (n \in \mathbb{N})$ and

$$C^2_{\phi\phi\mathcal{O}_n} = 2 \frac{(2\Delta_\phi)^2_{2n+1}}{(2n+1)!(4\Delta_\phi + 2n + 1 - 1)_{2n+1}}$$

Correlation function:

$$\langle 0|\phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)|0\rangle \propto \pm 1 + z^{-2\Delta_{\phi}} + (1-z)^{-2\Delta_{\phi}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Works also with generalized free boson: $\Delta = 2\Delta_{\phi} + 2n$

New equation ●○○○○○ Derivation

Perspectives in d > 20000

 $z \in \mathbb{C}$

The new crossing equation

Standard bootstrap equation

$$\sum_{\mathcal{O}} C_{\phi\phi\mathcal{O}}^2 \left[z^{\Delta - 2\Delta_{\phi}} {}_2F_1(\Delta, \Delta; 2\Delta; z) - (1-z)^{\Delta - 2\Delta_{\phi}} {}_2F_1(\Delta, \Delta; 2\Delta; 1-z) \right] = 0$$

New momentum-space bootstrap equation

$w \in (0,1)$

$$\sum_{\mathcal{O}} C_{\phi\phi\mathcal{O}}^2 \left[\frac{\Gamma(2\Delta)}{\Gamma(\Delta)^2 \Gamma(2\Delta_{\phi})} w^{2\Delta_{\phi}-1} {}_2F_1(1-\Delta,\Delta;2\Delta_{\phi};w) - \frac{w^{\Delta-1}}{\Gamma(2\Delta_{\phi}-\Delta)\Gamma(\Delta)} {}_2F_1(\Delta-2\Delta_{\phi}+1,\Delta;2\Delta;w) \right] = 0$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Derivation

Perspectives in d > 20000

Comparison

Standard bootstrap equation $\sum_{\sigma} C^2_{\phi\phi\sigma} \left[z^{\Delta-2\Delta_{\phi}} {}_2F_1(\Delta, \Delta; 2\Delta; z) - (1-z)^{\Delta-2\Delta_{\phi}} {}_2F_1(\Delta, \Delta; 2\Delta; 1-z) \right] = 0$

New bootstrap equation

$$\begin{split} \sum_{O} C_{\phi\phi O}^2 \left[\frac{\Gamma(2\Delta)}{\Gamma(\Delta)^2 \Gamma(2\Delta_{\phi})} w^{2\Delta_{\phi}-1} {}_2 F_1(1-\Delta,\Delta;2\Delta_{\phi};w) \right. \\ \left. - \frac{w^{\Delta-1}}{\Gamma(2\Delta_{\phi}-\Delta)\Gamma(\Delta)} {}_2 F_1(\Delta-2\Delta_{\phi}+1,\Delta;2\Delta;w) \right] = 0 \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

• Symmetric $z \leftrightarrow 1-z$

Asymmetric

Derivation

Perspectives in d > 20000

Comparison

New bootstrap equation $\sum_{\mathcal{O}} C^{2}_{\phi\phi\mathcal{O}} \left[\frac{\Gamma(2\Delta)}{\Gamma(\Delta)^{2}\Gamma(2\Delta_{\phi})} w^{2\Delta_{\phi}-1} {}_{2}F_{1}(1-\Delta,\Delta;2\Delta_{\phi};w) - \frac{w^{\Delta-1}}{\Gamma(2\Delta_{\phi}-\Delta)\Gamma(\Delta)} {}_{2}F_{1}(\Delta-2\Delta_{\phi}+1,\Delta;2\Delta;w) \right] = 0$

- Symmetric $z \leftrightarrow 1-z$
- Absolute convergence for $z \in \mathbb{C} \setminus (-\infty, 0) \cup (1, \infty)$

- Asymmetric
- No absolute convergence in s-channel

Derivation

Perspectives in d > 20000

Comparison

New bootstrap equation $\sum_{\mathcal{O}} C^2_{\phi\phi\mathcal{O}} \left[\frac{\Gamma(2\Delta)}{\Gamma(\Delta)^2 \Gamma(2\Delta_{\phi})} w^{2\Delta_{\phi}-1} {}_2F_1(1-\Delta,\Delta;2\Delta_{\phi};w) - \frac{w^{\Delta-1}}{\Gamma(2\Delta_{\phi}-\Delta)\Gamma(\Delta)} {}_2F_1(\Delta-2\Delta_{\phi}+1,\Delta;2\Delta;w) \right] = 0$

- Symmetric $z \leftrightarrow 1-z$
- Absolute convergence for $z \in \mathbb{C} \setminus (-\infty, 0) \cup (1, \infty)$
- Blocks are unphysical

- Asymmetric
- No absolute convergence in s-channel
- Blocks are 3-pt functions in momentum space

peculiar properties

Bootstrap	review
000000	

Derivation

Perspectives in d > 20000

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … のへで

Features of the new equation

$$\sum_{\mathcal{O}} C_{\phi\phi\mathcal{O}}^2 \left[\frac{\Gamma(2\Delta)}{\Gamma(\Delta)^2 \Gamma(2\Delta_{\phi})} w^{2\Delta_{\phi}-1} {}_2F_1(1-\Delta,\Delta;2\Delta_{\phi};w) - \frac{w^{\Delta-1}}{\Gamma(2\Delta_{\phi}-\Delta)\Gamma(\Delta)} {}_2F_1(\Delta-2\Delta_{\phi}+1,\Delta;2\Delta;w) \right] = 0$$

Identity operator: $\Delta = 0$

- s channel is zero
- \bullet t channel $\propto \delta(w)$

Derivation

Perspectives in d > 20000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Features of the new equation

$$\sum_{\mathcal{O}} C_{\phi\phi\mathcal{O}}^2 \left[\frac{\Gamma(2\Delta)}{\Gamma(\Delta)^2 \Gamma(2\Delta_{\phi})} w^{2\Delta_{\phi}-1} {}_2F_1(1-\Delta,\Delta;2\Delta_{\phi};w) - \frac{w^{\Delta-1}}{\Gamma(2\Delta_{\phi}-\Delta)\Gamma(\Delta)} {}_2F_1(\Delta-2\Delta_{\phi}+1,\Delta;2\Delta;w) \right] = 0$$

Identity operator: $\Delta = 0$

- s channel is zero
- t channel $\propto \delta(w)$

Double-twist operators: $\Delta = 2\Delta_{\phi} + n$ with $n \in \mathbb{N}$

- t channel is zero
- \bullet s channel is Gegenbauer polynomial $C_n^{(2\Delta_\phi-1/2)}(1-2w)$

Derivation

Perspectives in d > 20000

Features of the new equation

$$\sum_{\mathcal{O}} C_{\phi\phi\mathcal{O}}^2 \left[\frac{\Gamma(2\Delta)}{\Gamma(\Delta)^2 \Gamma(2\Delta_{\phi})} w^{2\Delta_{\phi}-1} {}_2F_1(1-\Delta,\Delta;2\Delta_{\phi};w) - \frac{w^{\Delta-1}}{\Gamma(2\Delta_{\phi}-\Delta)\Gamma(\Delta)} {}_2F_1(\Delta-2\Delta_{\phi}+1,\Delta;2\Delta;w) \right] = 0$$

Identity operator: $\Delta = 0$

- s channel is zero
- t channel $\propto \delta(w)$

Double-twist operators: $\Delta=2\Delta_\phi+n$ with $n\in\mathbb{N}$

• t channel is zero

• s channel is Gegenbauer polynomial $C_n^{(2\Delta_\phi-1/2)}(1-2w)$ Other special case: $\Delta\in\mathbb{N}$

 \bullet s channel is Jacobi polynomial $P_n^{(2\Delta_\phi-1,1-2\Delta_\phi)}(1-2w)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Bootstrap review	New equation	000000	Perspectives in d > 2 0000
Connection betwe	en the two equ	uations	

Projection onto a basis of Jacobi polynomials

$$\int_0^1 dw (1-w)^{1-2\Delta_{\phi}} P_n(1-2w)[\ldots] \qquad \forall \ n \in \mathbb{N}$$

New bootstrap equation projected (1)

$$\begin{split} \sum_{\mathcal{O}} C_{\phi\phi\mathcal{O}}^2 \left[\frac{\Gamma(2\Delta)}{\Gamma(\Delta)^2} \frac{\sin(\pi\Delta)}{\pi(\Delta+n)(1-\Delta+n)} - \frac{\sin[\pi(2\Delta_{\phi}-\Delta)](2\Delta_{\phi}-\Delta)_n}{\pi(\Delta-2\Delta_{\phi}+1)_{n+1}} \right. \\ \left. \times \, _4F_3 \left(\begin{array}{c} \Delta, \Delta, \Delta-2\Delta_{\phi}+1, \Delta-2\Delta_{\phi}+1\\ 2\Delta, \Delta-2\Delta_{\phi}+n+2, \Delta-2\Delta_{\phi}-n+1 \end{array}; 1 \right) \right] = 0 \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Bootstrap review	New equation	Derivation 000000	Perspectives in d > 2 0000
Connection betwe	en the two equa	tions	

Projection onto a basis of Jacobi polynomials

$$\int_0^1 dw (1-w)^{1-2\Delta_{\phi}} P_n(1-2w)[\ldots] \qquad \forall \ n \in \mathbb{N}$$

New bootstrap equation projected (1)

$$\begin{split} \sum_{\mathcal{O}} C_{\phi\phi\mathcal{O}}^2 \left[\frac{\Gamma(2\Delta)}{\Gamma(\Delta)^2} \frac{\sin(\pi\Delta)}{\pi(\Delta+n)(1-\Delta+n)} - \frac{\sin[\pi(2\Delta_{\phi}-\Delta)](2\Delta_{\phi}-\Delta)_n}{\pi(\Delta-2\Delta_{\phi}+1)_{n+1}} \right. \\ \left. \times \left. {}_4F_3 \left(\begin{array}{c} \Delta, \Delta, \Delta-2\Delta_{\phi}+1, \Delta-2\Delta_{\phi}+1\\ 2\Delta, \Delta-2\Delta_{\phi}+n+2, \Delta-2\Delta_{\phi}-n+1 \end{array}; 1 \right) \right] = 0 \end{split}$$

A known basis of functionals!!! Mazáč, 1611.10060

 \Rightarrow new equation is integral transform of original along branch cut

Derivation

Perspectives in d > 20000

 $\forall n \in \mathbb{N}$

A nice basis of functionals

New bootstrap equation projected (2)

$$\begin{split} \sum_{\mathcal{O}} C_{\phi\phi\mathcal{O}}^2 \left[\frac{\Gamma(2\Delta)}{\Gamma(\Delta)^2 \Gamma(2\Delta_{\phi} - \Delta) \Gamma(\Delta + 2\Delta_{\phi} - 1)} \\ & \times \frac{1}{(2\Delta_{\phi} - \Delta + n)(2\Delta_{\phi} + \Delta - 1 + n)} \\ & - \frac{\Gamma(\Delta - 2\Delta_{\phi} + 1)}{\Gamma(2\Delta_{\phi} - \Delta) \Gamma(\Delta - 2\Delta_{\phi} + 1 - n) \Gamma(\Delta + 2\Delta_{\phi} + n)} \\ & \times {}_4F_3 \left(\begin{array}{c} \Delta, \Delta, \Delta - 2\Delta_{\phi} + 1, \Delta + 2\Delta_{\phi} - 1\\ 2\Delta, \Delta - 2\Delta_{\phi} + 1 - n, \Delta + 2\Delta_{\phi} + n \end{array}; 1 \right) \right] = 0 \end{split}$$

- \bullet Zero at all double twist dimension but $\Delta=2\Delta_\phi+n$
- Known as contour integral in cross-ratio space

Mazáč, Rastelli, Zhou 1910.12855

• Convenient for constructing free boson/fermion functionals

Bootstrap review	New equation	Derivation	Perspectives in d > 2
000000	○○○○●	000000	0000
Generalized fr	ee field solution		

Plug in scaling dimensions:

- identity $\Delta = 0$ (only t channel)
- double-twist operators $\Delta=2\Delta_{\phi}+k,\;k\in\mathbb{N}$ (only s channel)

$$\frac{(-1)^n}{\Gamma(2\Delta_\phi)^2} \left[C^2_{\phi\phi\mathcal{O}_n} \frac{n!(4\Delta_\phi + n - 1)_n}{(2\Delta_\phi)^2_n} - 1 \right] = 0$$

Recover free fermion/boson OPE coefficients for odd/even \boldsymbol{n}

$$C_{\phi\phi\mathcal{O}_n}^2 = \frac{(2\Delta_\phi)_n^2}{n!(4\Delta_\phi + n - 1)_n}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Bootstrap review	New equation	Derivation	Perspectives in d > 2
000000		●○○○○○	0000
How did we deriv	ve the new equa	ition?	

Simple Fourier transform?

$$\widetilde{\phi}(p) = \int d^d x \, e^{i p \cdot x} \phi(x)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

In Euclidean space:

- correlators ill-defined at coincident points
- Fourier transform does not commute with OPE

Bootstrap review	New equation	Derivation	Perspectives in d > 2
000000		000000	0000
How did we deriv	e the new equat	ion?	

Simple Fourier transform?

$$\widetilde{\phi}(p) = \int d^d x \, e^{i p \cdot x} \phi(x)$$

In Euclidean space:

- correlators ill-defined at coincident points
- Fourier transform does not commute with OPE
- In Minkowski space:
 - time-ordered correlators do not admit an OPE
 - OPE for Wightman functions, but no crossing symmetry
 ⇒ must be replaced by something else

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

$$\begin{split} \langle 0 | \widetilde{\phi}(p_1) \widetilde{\phi}(p_2) \widetilde{\phi}(p_3) \widetilde{\phi}(p_4) | 0 \rangle \\ &= \delta^d(p_1 + p_2 + p_3 + p_4) \langle\!\langle \widetilde{\phi}(p_1) \widetilde{\phi}(p_2) \widetilde{\phi}(p_3) \widetilde{\phi}(p_4) \rangle\!\rangle \end{split}$$

$$\begin{split} \langle 0 | \widetilde{\phi}(p_1) \widetilde{\phi}(p_2) \widetilde{\phi}(p_3) \widetilde{\phi}(p_4) | 0 \rangle \\ &= \delta^d(p_1 + p_2 + p_3 + p_4) \langle\!\langle \widetilde{\phi}(p_1) \widetilde{\phi}(p_2) \widetilde{\phi}(p_3) \widetilde{\phi}(p_4) \rangle\!\rangle \end{split}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $\langle\!\langle \widetilde{\phi}(p_1)\widetilde{\phi}(p_2)\widetilde{\phi}(p_3)\widetilde{\phi}(p_4)\rangle\!\rangle$ $\sim \sum_{\mathcal{O}} \langle\!\langle \widetilde{\phi}(p_1)\widetilde{\phi}(p_2)\mathcal{O}(-p)\rangle\!\rangle \langle\!\langle \mathcal{O}(p)\widetilde{\phi}(p_3)\widetilde{\phi}(p_4)\rangle\!\rangle$

with $p = p_1 + p_2 = -p_3 - p_4$

$$\begin{aligned} |0|\widetilde{\phi}(p_1)\widetilde{\phi}(p_2)\widetilde{\phi}(p_3)\widetilde{\phi}(p_4)|0\rangle \\ &= \delta^d(p_1 + p_2 + p_3 + p_4) \langle\!\langle \widetilde{\phi}(p_1)\widetilde{\phi}(p_2)\widetilde{\phi}(p_3)\widetilde{\phi}(p_4)\rangle\!\rangle \end{aligned}$$

 $\langle\!\langle \widetilde{\phi}(p_1)\widetilde{\phi}(p_2)\widetilde{\phi}(p_3)\widetilde{\phi}(p_4)\rangle\!\rangle$ $\sim \sum_{\mathcal{O},m} \langle\!\langle \widetilde{\phi}(p_1)\widetilde{\phi}(p_2)\mathcal{O}^m(-p)\rangle\!\rangle \langle\!\langle \mathcal{O}^m(p)\widetilde{\phi}(p_3)\widetilde{\phi}(p_4)\rangle\!\rangle C_m^{(d-3)/2}(\cos\theta)$

with
$$p = p_1 + p_2 = -p_3 - p_4$$

and spin indices in d>2

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conformal blocks are products of 3-point functions:

• Generalized hypergeometric functions of ratios of momenta $\frac{p_i^2}{p_i^2}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conformal blocks are products of 3-point functions:

- Generalized hypergeometric functions of ratios of momenta $\frac{p_i^2}{p_i^2}$
- Analytic except at light-cone crossings

$$\langle\!\langle \widetilde{\phi}_1(p_1)\widetilde{\phi}_2(p_2)\widetilde{\phi}_3(p_3)
angle\!\rangle \propto (p_i^2)^{\Delta_i - d/2}$$
 as $p_i^2 o 0_\pm$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Conformal blocks are products of 3-point functions:

- Generalized hypergeometric functions of ratios of momenta $\frac{p_i^2}{p_i^2}$
- Analytic except at light-cone crossings

$$\langle\!\langle \widetilde{\phi}_1(p_1)\widetilde{\phi}_2(p_2)\widetilde{\phi}_3(p_3) \rangle\!\rangle \propto (p_i^2)^{\Delta_i - d/2}$$
 as $p_i^2 o 0_{\pm}$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

• Tempered distributions: singularities are integrable $(\Delta_i > \frac{d}{2} - 1)$

Momentum-space conformal blocks

Conformal blocks are products of 3-point functions:

- $\frac{p_i^2}{p_j^2}$ • Generalized hypergeometric functions of ratios of momenta
- Analytic except at light-cone crossings

$$\langle\!\langle \widetilde{\phi}_1(p_1)\widetilde{\phi}_2(p_2)\widetilde{\phi}_3(p_3) \rangle\!\rangle \propto (p_i^2)^{\Delta_i - d/2}$$
 as $p_i^2 o 0_{\pm}$

Tempered distributions: singularities are integrable

 $(\Delta_i > \frac{d}{2} - 1)$

• Residue is ordinary $_2F_1$ hypergeometric function (two different forms depending on the limit)

Gillioz 2012.09825

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Causality: the commutator has support in the light cone

$$\left[\phi(0),\phi(x)\right] = 0 \qquad \forall \ |\vec{x}| \ge |x^0|$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Bootstrap review	New equation	Derivation	Perspectives in d > 2
000000		○○○●○○	0000
The consequences	s of causality in	momentum sp	ace

Causality: the commutator has support in the light cone

$$\left[\phi(0), \phi(x)\right] = 0 \qquad \forall \ |\vec{x}| \ge |x^0|$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

 \Rightarrow special analyticity properties in q for $\left[\widetilde{\phi}(p-q),\widetilde{\phi}(p+q)\right]$

	۲ اند د		
The conseque	ences of causality	<u>v in momentur</u>	1 SDACE

Causality: the commutator has support in the light cone

$$\left[\phi(0), \phi(x)\right] = 0 \qquad \forall \ |\vec{x}| \ge |x^0|$$

 \Rightarrow special analyticity properties in q for $\left[\widetilde{\phi}(p-q),\widetilde{\phi}(p+q)\right]$

 \Rightarrow Jost-Lehmann-Dyson representation for 4-pt function (1957)

$$\langle 0 | \widetilde{\phi}(-k-p) \big[\widetilde{\phi}(p-q), \widetilde{\phi}(p+q) \big] \widetilde{\phi}(k-p) | 0 \rangle$$

also valid without mass gap

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 ● ●

×

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Causality: the retarded commutator has support in the past light cone

$$\theta(-x^0)[\phi(0),\phi(x)] = 0 \qquad \forall \ |\vec{x}| \ge -x^0$$

 \Rightarrow special analyticity properties in q for $\left[\widetilde{\phi}(p-q), \widetilde{\phi}(p+q)\right]$

Causality: the retarded commutator has support in the past light cone

$$\theta(-x^0)[\phi(0),\phi(x)] = 0 \qquad \forall \ |\vec{x}| \ge -x^0$$

 \Rightarrow special analyticity properties in q for $\left[\widetilde{\phi}(p-q), \widetilde{\phi}(p+q)\right]$

$$\Rightarrow \quad \int dq^0 \frac{1}{q^0 - i} \langle 0 | \widetilde{\phi}(-k - p) \big[\widetilde{\phi}(p - q), \widetilde{\phi}(p + q) \big] \widetilde{\phi}(k - p) | 0 \rangle$$

is **analytic** in \vec{q} in the domain $|\text{im } \vec{q}| < 1$

Examine analyticity in s and t channel & for each conformal block with p_1 , p_4 , \vec{q} fixed and varying q^0 , where $q = \frac{1}{2}(p_3 - p_2)$

The integral is analytic at generic \vec{q}

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 ● ●

Examine analyticity in s and t channel & for each conformal block with p_1 , p_4 , \vec{q} fixed and varying q^0 , where $q = \frac{1}{2}(p_3 - p_2)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 ● ●

 $\exists \vec{q_*}$ such that the integral is discontinuous at $\vec{q} = \vec{q_*}$

Examine analyticity in s and t channel & for each conformal block with p_1 , p_4 , \vec{q} fixed and varying q^0 , where $q = \frac{1}{2}(p_3 - p_2)$

 $\exists \ \vec{q_*}$ such that the integral is discontinuous at $\vec{q} = \vec{q_*}$ and $\vec{q} = -\vec{q_*}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Kinematics of discontinuity fixed by p_1 and p_4 :

$$w \equiv -\frac{p_1^+}{p_4^+} = \frac{p_1^2}{s} \qquad \in (0,1)$$

$$\bar{w} \equiv -\frac{p_4^-}{p_1^-} = \frac{p_4^2}{s} \qquad \in (0,1)$$

$$\operatorname{disc}_{\vec{q}=\vec{q}_*} \int \frac{dq^0}{q^0 - i} \langle\!\langle \widetilde{\phi}(p_1) \widetilde{\phi}(p-q) \widetilde{\phi}(p+q) \widetilde{\phi}(p_4) \rangle\!\rangle \propto \sum_{\mathcal{O}} C^2_{\phi\phi\mathcal{O}} S_h(w) S_{\bar{h}}(\bar{w})$$

$$S_{\Delta}(w) = \frac{\Gamma(2\Delta)}{\Gamma(\Delta)^2 \Gamma(2\Delta_{\phi})} w^{2\Delta_{\phi}-1} {}_2F_1(1-\Delta,\Delta;2\Delta_{\phi};w)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Kinematics of discontinuity fixed by p_1 and p_4 :

$$w \equiv -\frac{p_1^+}{p_4^+} = \frac{p_1^2}{s} = \frac{t}{p_4^2} \quad \in (0,1)$$
$$\bar{w} \equiv -\frac{p_4^-}{p_1^-} = \frac{p_4^2}{s} = \frac{t}{p_1^2} \quad \in (0,1)$$

$$\begin{aligned} &\operatorname{disc}_{\vec{q}=\vec{q}_{\star}} \int \frac{dq^{0}}{q^{0}-i} \langle\!\langle \widetilde{\phi}(p_{1}) \widetilde{\phi}(p-q) \widetilde{\phi}(p+q) \widetilde{\phi}(p_{4}) \rangle\!\rangle \propto \sum_{\mathcal{O}} C^{2}_{\phi\phi\mathcal{O}} S_{h}(w) S_{\bar{h}}(\bar{w}) \\ &\operatorname{disc}_{\vec{q}=\vec{q}_{\star}} \int \frac{dq^{0}}{q^{0}-i} \langle\!\langle \widetilde{\phi}(p_{1}) \widetilde{\phi}(p+q) \widetilde{\phi}(p-q) \widetilde{\phi}(p_{4}) \rangle\!\rangle \propto \sum_{\mathcal{O}} C^{2}_{\phi\phi\mathcal{O}} T_{h}(w) T_{\bar{h}}(\bar{w}) \end{aligned}$$

$$S_{\Delta}(w) = \frac{\Gamma(2\Delta)}{\Gamma(\Delta)^2 \Gamma(2\Delta_{\phi})} w^{2\Delta_{\phi}-1} {}_2F_1(1-\Delta,\Delta;2\Delta_{\phi};w)$$
$$T_{\Delta}(w) = \frac{w^{\Delta-1}}{\Gamma(2\Delta_{\phi}-\Delta)\Gamma(\Delta)} {}_2F_1(\Delta-2\Delta_{\phi}+1,\Delta;2\Delta;w)$$

Kinematics of discontinuity fixed by p_1 and p_4 :

$$w \equiv -\frac{p_1^+}{p_4^+} = \frac{p_1^2}{s} = \frac{t}{p_4^2} \quad \in (0,1)$$
$$\bar{w} \equiv -\frac{p_4^-}{p_1^-} = \frac{p_4^2}{s} = \frac{t}{p_1^2} \quad \in (0,1)$$

$$\begin{aligned} & \operatorname{disc}_{\vec{q}=\vec{q}_{*}} \int \frac{dq^{0}}{q^{0}-i} \langle\!\langle \widetilde{\phi}(p_{1}) \widetilde{\phi}(p-q) \widetilde{\phi}(p+q) \widetilde{\phi}(p_{4}) \rangle\!\rangle \propto \sum_{\mathcal{O}} C^{2}_{\phi\phi\mathcal{O}} S_{h}(w) S_{\bar{h}}(\bar{w}) \\ &= \operatorname{disc}_{\vec{q}=\vec{q}_{*}} \int \frac{dq^{0}}{q^{0}-i} \langle\!\langle \widetilde{\phi}(p_{1}) \widetilde{\phi}(p+q) \widetilde{\phi}(p-q) \widetilde{\phi}(p_{4}) \rangle\!\rangle \propto \sum_{\mathcal{O}} C^{2}_{\phi\phi\mathcal{O}} T_{h}(w) T_{\bar{h}}(\bar{w}) \end{aligned}$$

$$S_{\Delta}(w) = \frac{\Gamma(2\Delta)}{\Gamma(\Delta)^2 \Gamma(2\Delta_{\phi})} w^{2\Delta_{\phi}-1} {}_2F_1(1-\Delta,\Delta;2\Delta_{\phi};w)$$
$$T_{\Delta}(w) = \frac{w^{\Delta-1}}{\Gamma(2\Delta_{\phi}-\Delta)\Gamma(\Delta)} {}_2F_1(\Delta-2\Delta_{\phi}+1,\Delta;2\Delta;w)$$

Bootstrap review	New equation	Derivation	Perspectives in d > 2
000000		000000	$\bullet \circ \circ \circ$
Perspectives in	higher d		

What is still valid in d > 2?

- Causality \Rightarrow analyticity
- Discontinuity of the blocks at double light cone crossing
- Residue is ${}_2F_1$ hypergeometric of ratios of momenta

What changes in d > 2?

- $\bullet\,$ Discontinuous point \to discontinuous locus
- Kinematic variables are different in the s and t channel:

$$\left(\frac{p_1^2}{s}, \frac{p_4^2}{s}, \cos \theta_s\right) \quad \leftrightarrow \quad \left(\frac{t}{p_1^2}, \frac{t}{p_4^2}, \cos \theta_t\right)$$

 Spin of internal operator (but characterized by integer l for external scalars) Bootstrap review 000000

New equation

Derivation

Perspectives in d > 2

Conformal blocks

More work needed to fit on a slide!

Bootstrap review	New equation	Derivation	Perspectives in $d > 2$
000000		000000	$00 \bullet 0$
Generalized fre	ee field theorv		

At double-twist dimensions $\Delta = 2\Delta_{\phi} + \ell + 2n$,

- t-channel blocks are zero
- s-channel blocks are a sum of products of polynomials

But spin complicates the matter...

- Gegenbauer $C_m^{(d-3)/2}(\cos \theta_s)$ of degree $m=0,\ldots,\ell$
- Jacobi $P_{n+j}\left(1-2p_1^2/s\right)$ and $P_{n+\bar{j}}\left(1-2p_4^2/s\right)$ with $j,\bar{j}=0,\ldots,\ell-m$ \rightarrow possible improvements?

Orthogonality can be used to recover OPE coefficients Fitzpatrick, Kaplan 1112.4845

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Bootstrap review	New equation	Derivation 000000	Perspectives in d > 2 $\circ \circ \circ \bullet$
Conclusions			

Summary

- A new bootstrap equation in 2 and higher d, with conformal blocks known in closed form in <u>any</u> d!
- A nice basis of functionals with zeros at double-twist dimensions
- All results also for distinct external dimensions

Outlook

- Analytical bootstrap in a neighborhood of GFF (e.g. weakly relevant flows, AdS duals, ...)
- Build optimal functionals, numerically and analytically
- Other numerical approaches using asymmetry